Simultaneous NMDA-dependent long-term potentiation of EPSCs and long-term depression of IPSCs in cultured rat hippocampal neurons.

نویسندگان

  • Miriam Ivenshitz
  • Menahem Segal
چکیده

A fundamental issue in understanding activity-dependent long-term plasticity of neuronal networks is the interplay between excitatory and inhibitory synaptic drives in the network. Using dual whole-cell recordings in cultured hippocampal neurons, we examined synaptic changes occurring as a result of a transient activation of NMDA receptors in the network. This enhanced transient activation led to a long-lasting increase in synchrony of spontaneous activity of neurons in the network. Simultaneous long-term potentiation of excitatory synaptic strength and a pronounced long-term depression of inhibitory synaptic currents (LTDi) were produced, which were independent of changes in postsynaptic potential and Ca2+ concentrations. Surprisingly, miniature inhibitory synaptic currents were not changed by the conditioning, whereas both frequency and amplitudes of miniature EPSCs were enhanced. LTDi was mediated by activation of a presynaptic GABAB receptor, because it was blocked by saclofen and CGP55845 [(2S)-3-{[(15)-1-(3, 4-dichlorophenyl)ethyl]amino-2-hydroxypropyl)(phenylmethyl)phosphinic acid]. The cAMP antagonist Rp-adenosine 3 ', 5 ' -cyclic monophosphothioate abolished all measured effects of NMDA-dependent conditioning, whereas a nitric oxide synthase inhibitor was ineffective. Finally, network-induced plasticity was not occluded by a previous spike-timing-induced plasticity, indicating that the two types of plasticity may not share the same mechanism. These results demonstrate that network plasticity involves opposite affects on inhibitory and excitatory neurotransmission.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of NMDA receptors and voltage-dependent calcium channels in augmenting long-term potentiation of the CA1 area in morphine-dependent rats

  The involvement of NMDA receptors and voltage-dependent calcium channels in augmentation of long-term potentiation (LTP) was investigated at the Schaffer collateral CA1 pyramidal cell synapses in hippocampal slices of morphine dependent rats, using primed-burst tetanic simulation. The amplitude of the population spike and its delay were measured as indices of increase in postsynaptic excitabi...

متن کامل

P13: Potassium Channels and Long-Term Potentiation Formation

Long-term potentiation (LTP) is a form of activity-dependent plasticity that occurs during learning. Potassium channels are the most diverse group of all ion channels that related to synaptic plasticity. Small-conductance calcium-activated potassium channels (SKs) are found in hippocampal CA1 neurons and by inhibiting of postsynaptic potentials are involved in synaptic transmission impairment. ...

متن کامل

P19: Long-Term Potentiation

The term synaptic plasticity points to a series of persistent changes related to the activity of synapses. Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulations. Differe...

متن کامل

P6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation

Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...

متن کامل

The Effect of Noise Pollution Exposure during Pregnancy on Long Term Potentiation Induction in Pyramidal Neurons of Hippocampus CA1 area in Male Rat Offsprings

Background: It is believed that cognitive processing is easily disturbed by incompatible environmental stimulations. Many studies have shown that prenatal stress affects fetal brain development. The aim of this study was to evaluate the effect of noise pollution exposure during conception period on neural activity of hippocampus CA1 area in male rat offspring. Methods: Four groups of rats inclu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 26 4  شماره 

صفحات  -

تاریخ انتشار 2006